Ergonomics for Preventing MSDs in the Age of Al

Ming-Lun "Jack" Lu (呂明倫), PhD, CPE Musculoskeletal Health Program Manager and Researcher National Institute for Occupational Safety and Health (NIOSH)

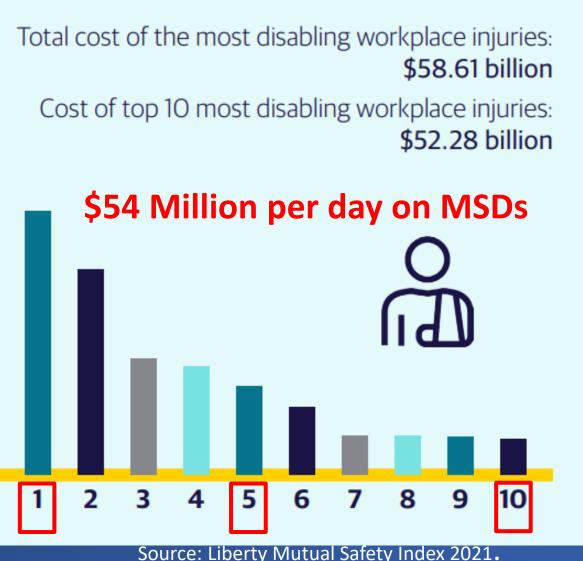
Overview of the Talk

Part 1: Surveillance and Etiology of

Musculoskeletal Disorders (MSDs)

Part 2: Ergonomic Assessment Methods

Part 3: Future Ergonomic Risk Assessments


Part 4: NORA MSD Research Agenda

Part 5: Elements of Ergonomics Programs

Part 1 Surveillance and Etiology of Musculoskeletal Disorders (MSDs)

Workers' Compensation Cost for MSDs (1/3)

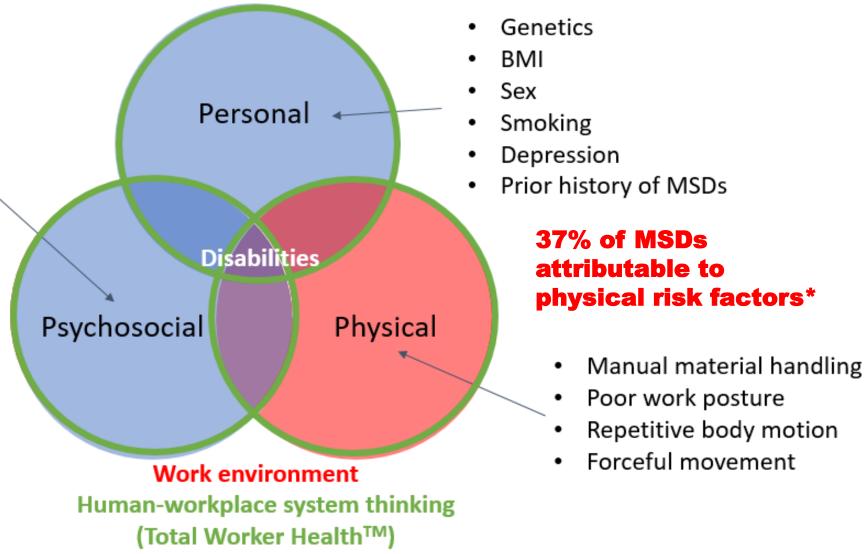
	Cost billions	Percent total	
1.	\$13.30	22.7%	Overexertion involving outside sources (handling object)
2.	\$10.58	18.1%	Falls on same level
3.	\$6.26	10.7%	Falls to lower level
4.	\$5.61	9.6%	Struck by object or equipment (being hit by objects)
5.	\$4.71	8.0%	Other exertions or bodily reactions (awkward postures)
6.	\$3.16	5.4%	Roadway incidents involving motorized land vehicle (vehicle crashes)
7.	\$2.52	4.3%	Slip or trip without fall
8.	\$2.46	4.2%	Struck against object or equipment (colliding with objects)
9.	\$2.01	3.4%	Caught in or compressed by equipment or objects (running equipment or machines)
10.	\$1.66	2.8%	Repetitive motions involving microtasks

Workers' Compensation Cost for MSDs (2/3)

The Workplace Safety Index: injury rankings by type, 2018 to 2023

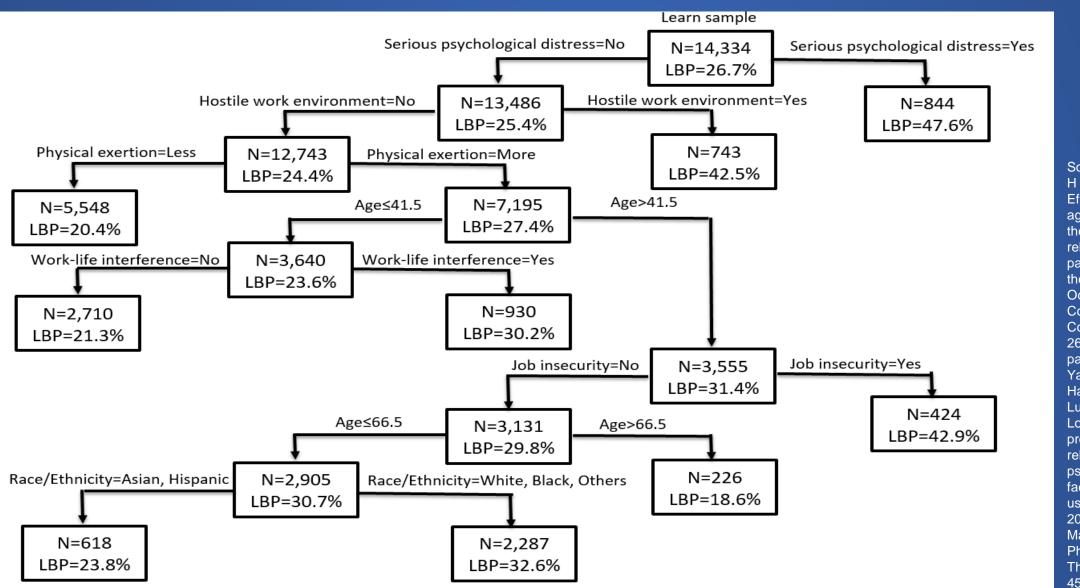
Cause	2018	2019	2020	2021	2022	2023
Overexertion involving outside sources	1	1	1	1	1	1
Falls on same level	2	2	2	2	2	2
Falls to lower level	3	4	4	3	4	3
Struck by object or equipment	4	3	3	4	3	4
Other exertions or bodily reactions	5	5	5	5	5	5
Roadway incidents involving motorized land vehicle	6	6	6	6	6	7
Slip or trip without fall	7	7	7	7	7	9
Caught in or compressed by equipment or objects	8	8	10	9	8	8
Struck against object or equipment	9	10	9	8	9	
Repetitive motions involving microtasks	10	9	8	10		

Source: Liberty Mutual Safety Index 2023. Photo Credit: Purchased Getty Image.

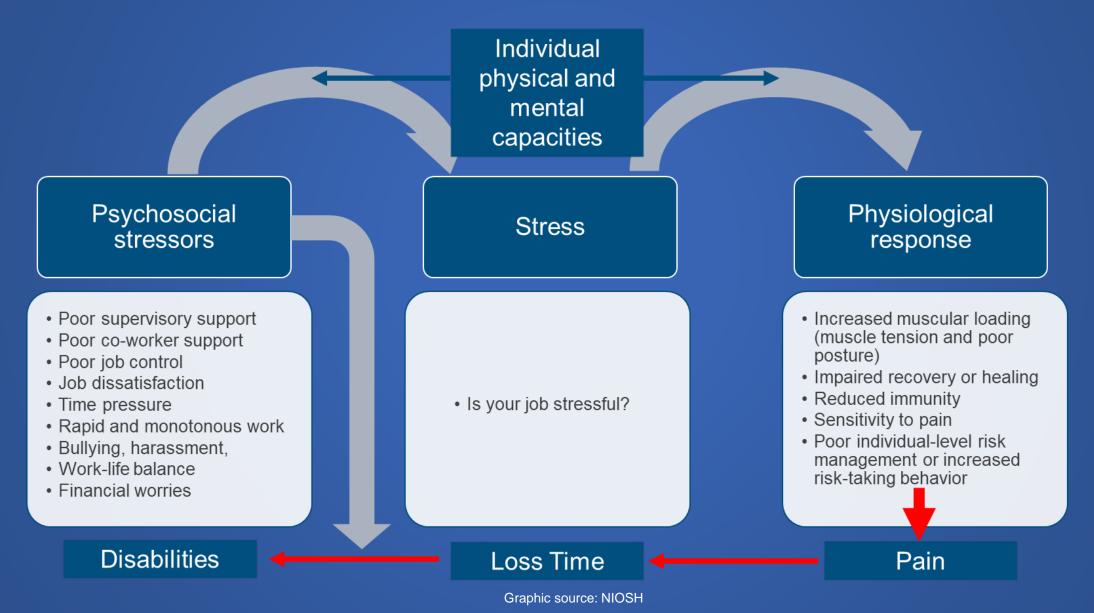

Workers' Compensation Cost for MSDs (3/3)

Top 5 loss causes by industry

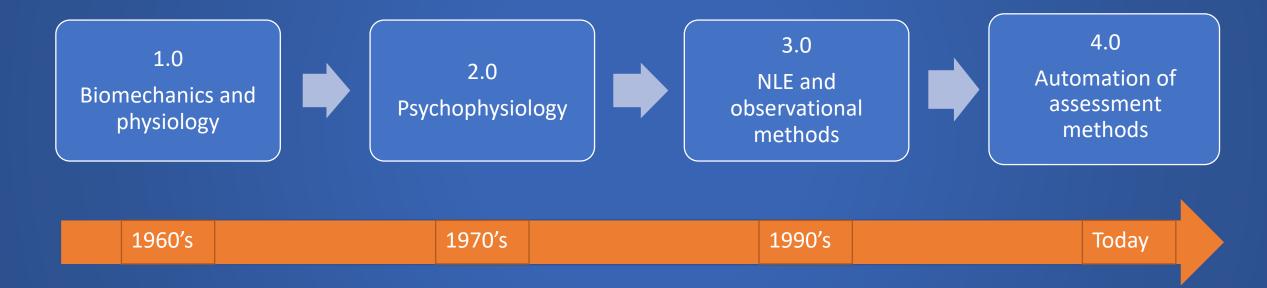
		Lo	oss cause rankin	g		Total	Percentage of
	1 st	2 nd	3 rd	4 th	5 th	cost	cost for over-
Industry			(Cost – \$B; %)			(\$B)	exertions (MSDs)
All industries	\$12.84; 21.9%	\$8.98; 15.3%	\$6.09; 10.4%	\$5.14; 8.8%	\$3.67; 6.3%	\$58.61	28.2%
Construction	\$3.22; 28.2%	\$2.09; 18.4%	\$1.52; 13.3%	\$1.00; 8.8%	\$0.86; 7.6%	\$11.40	25.9%
Manufacturing	\$1.80; 21.6%	\$ 1.20; 14.4%	\$0.97; 11.7%	\$0.82; 9.9%	\$0.71; 8.5%	\$8.32	21.6%
Professional & business services	\$1.73; 21.5%	\$1.56; 19.3%	\$1.07; 13.3%	\$0.60; 7.5%	\$0.47; 5.9%	\$8.08	19.3%
Retail	\$1.64; 30.4%	\$ 1.08; 20.1%	\$0.55; 10.3%	\$0.41; 7.7%	\$0.36; 6.6%	\$5.39	37.1%
Healthcare & social assistance	\$1.54; 28.7%	\$1.35; 25.1%	\$0.50; 9.4%	\$0.37; 6.8%	\$0.29; 5.4%	\$5.56	32.9%
Transport & warehousing	\$1.37; 28.5%	\$0.63; 13.2%	\$0.46; 9.6%	\$0.44; 9.1%	\$0.40; 8.3%	\$4.79	38.2%
Wholesale	\$1.32; 31.5%	\$0.53; 12.7%	\$0.52; 12.4%	\$0.34; 8.1%	\$0.27; 6.4%	\$4.19	37.9%
Leisure & hospitality	\$1.22; 36.3%	\$0.43; 12.9%	\$0.28; 8.3%	\$0.25; 7.4%	\$0.24; 7.1%	\$3.35	20.3%
 Overexertion, outside sources Falls, same level Falls, to lower level 	Other ex	y object or equipment vertions or bodily react n or compressed by eq	ions	Intentional injury b	involving motorized y person harmful substances	land vehicle	Source: Liberty Mutual Safety Index 2023


Multifactorial Cause of MSDs

- Job stress (demands/control)
- Poor supervisory/colleague support
- Job dissatisfaction
- Time pressure
- Work organization: shift work (Chen 2023), rapid work pace, monotonous task


Source: MSDs and the Workplace: Low Back and Upper Extremities, National Academies, 2001; * Punnett et al., AJIM 48: 459-469, 2005

Intricate Interactions of MSD Risk Factors



Source: Lu M, Yang, H and Luckhaupt S. Effect of sex and age on moderating the risk of workrelated low back pain. Presented at the American **Occupational Health** Conference, Denver, Colorado, April 23-26. 2017. Data from paper by Haiou Yang, Scott Haldeman Ming-Lun Lu and Dean Baker: Low back pain prevalence and related workplace psychosocial risk factors: A study using data from 2010 NHIS. J of Manipulative Physiological Therapeutics. 39: 459-472 (2016).

Psychosocial Risk Pathways of MSDs

Part 2 Ergonomic Assessment Methods

2D and 3DSSPP (1970's), OWAS (1977), Snook Table (1978), NLE (1981), RULA (1993), RNLE (1993), PLIBEL (1995), Strain Index (1995), PATH (1996), ACGIH HAL (1997), OCRA (1998), QEC (1999), Washington State Ergo Checklist (2000), REBA (2000), ACGIH TLV for Lifting (2005), ACGIH for ULMF (2016), Kim (2017), LiFFT (2017), DUET (2018), etc.

Principles of Ergonomic Assessments

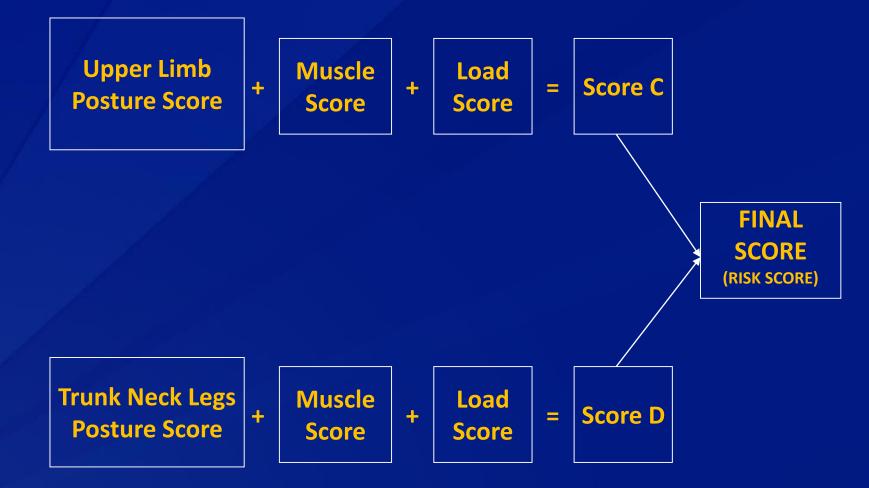
Graphic source: NIOSH

General Method Categorization

 Upper body (Hands/wrists, arms and shoulders)
 Low back
 Whole body

Photo credit: Purchased iStock photos

Upper Body Assessment Methods

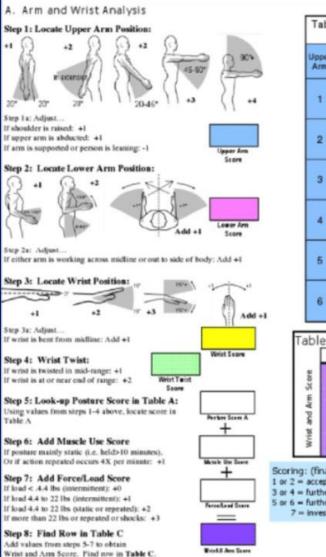

Rapid Upper Limb Assessment (RULA)
 Strain Index (SI)
 Hand Activity Level (HAL)

RULA

Tool used to detect work postures or risk factors that may need to modified.
 Results in a risk score between 1-7, where higher scores signify a greater

risk.

Procedural overview of RULA





Scoring System and Action Levels

- Action Level 1: Score of 1-2
 - posture is acceptable if it is not maintained for long durations.
- Action Level 2: Score of 3-4
 - changes may be needed soon.
- Action Level 3: Score of 5-6
 - changes are needed as soon as possible
- Action Level 4: Score of 7
 - changes should be made immediately.

			_		S	CO	R	ES	-		_		_	B. Neck, Tr
			Τı	ble	A: 1	Wri	st	Po	stu	re	S	por	e	Step 9: Locate Neck Posit
1			Up		Lower		ist	Twe Twe 1		Twe		Tve		"\b" "" " " " " "
2			-	-	1	1	2	2	2	2	3	3	3	(2) (2) (
			1		2	2	2	2	2	3	3	3	3	Step 9a: Adjunt
					3	2	3	3	3	3	3	4	4	If neck is twisted: +1
e.					1	2	3	3	3	3	4	4	4	If neck is side bending: +1
			2		2	3	3	3	3	3	4	4	4	Step 10: Locate Trunk P
					3	3	4	4	4	4	4	5	5	+1 - +2 -23
					1	з	3	4	4	4	4	5	5	5.2 5.2
			3		2	3	4	4	4	4	4	5	5	63 63
e.					3	4	4	4	4	4	5	5	5	971 971
					1	4	4	4	4	4	5	5	5	
			- 4		2	4	4	4	4	4	5	5	5	Step 10a: Adjust If trunk is twisted: +1
				_	3	4	4	4	5	5	5	6	6	If trunk is side bendling: +1
					1	5	5	5	5	5	6	6	7	Step 11: Legs:
			5		2	5	8	8	6	6	7	7	7	If legs and feet are supported:
			_	-	3	6	6	6	7	7	7	7	8	If not: +2
					1	7	7	7	7	7	8	8	9	Table B: Tru
			6		5	8	8	8	8	8	9	9	9	Poster Logs Logs Logs
+1		1		_	3	9	9	9	9	9	9	9	9	Rear 1 2 1 2 1 2 1 1 3 2 3 3 4
	- 1	T.	able	. (to at								2 2 3 2 3 4 5
		10	101			leck	, 0	uni		nd H	-			3 3 3 4 4 5 4 5 5 5 6 6 7
			. 1			-	-			-	-	-		
			ore	2	1	2	-	3	3	4	-	5	5	
			and Arm Scor	3	3	3	-	;	÷	1		5	6	Step 12: Look-up Posture
			ž,	4	3	3	t	3	4	5	-	6	6	Using values from steps 9-11
		1	ŝ	5	4	4	+-	4	5	6	-	7	7	locate score in Table B
			Wrist.	67	4	4	-	5	6	6	-	7	7	Step 13: Add Muscle Use
		1	ŝ	8.	5	5	+		7	17	-	÷	7	If posture mainly static (i.e. he Or if action repeated occurs 43
	1 or 2 3 or 4 5 or 6		acce furth furth	epta her her	score ble por investi investi jate an	stun gabi gabi	e on, on,	ch ch	ang	pe n pe s	oor	١	ne	If nore than 22 lbs (state of 1 If more than 22 lbs or repeated Step 15: Find Column in
						Fin	al	Sco	re	1				Add values from steps 12-14 t Neck, Trunk and Leg Score. 1

Strain Index

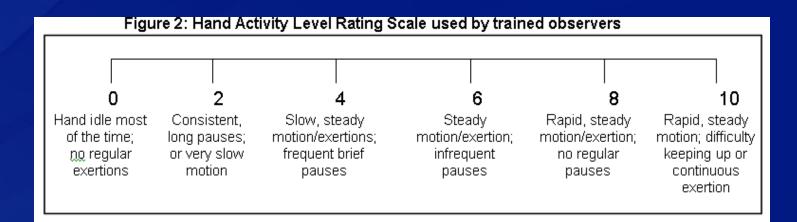
	Rating		
Risk Factor	criterion	Observation	Multiplier
	Light	Barely noticeable	1.0
	Somewhat		
Intensity of Exertion	Hard	Noticeable or definite effort	3.0
(IE)	Hard	Obvious effort	6.0
	Very Hard	Substantial effort	9.0
	Near Maximal	Uses shoulder or trunk force	13.0
	< 10 %		0.5
Duration of Exertion -	10 - 29 %	Time performing the effort X 100	1.0
% of job cycle	30-49 %	total cycle time	1.5
(D E)	50-79%		2.0
	> 80 %		3.0
	< 4		0.5
Effecte ver Minute	4 - 8	actual # of efforts observed	1.0
Efforts per Minute (EM)	9 - 14	total observation time in minutes	1.5
(2.11)	15 - 19		2.0
	> 20		3.0
	Very Good	Perfectly Neutral	1.0
Hand/Wrist Posture	Good	Near Neutral	1.0
(HP)	Fair	Non-Neutral	1.5
,	Bad	Marked Deviation	2.0
	Very Bad	Near Extreme	3.0
	Very Slow	Extremely slow paced	1.0
Encod of Work	Slow	"taking one's own time"	1.0
Speed of Work (SW)	Fair	Normal speed of motion	1.0
(311)	Fast	Rushed, but able to keep up	1.5
	Very Fast	Rushed and barely/unable to keep up	2.0
	< 1		0.25
Duration key was Dave	1 - 2	# of hours per day the worker	0.5
Duration- hrs per Day (DD)	2 - 4	performs the job (assuming 5 day	0.75
(00)	4 - 8	work week)	1.0
	> 8		1.5

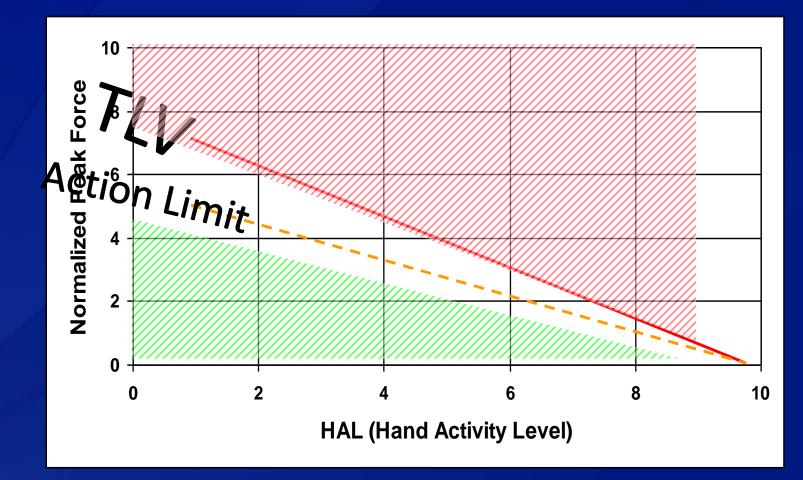
SI equation
SI = IE x DE x EM
x HP x SW x DD

SI Scores

- ≤ 3 are probably safe.
- 3 5 are uncertain.
- 5 7 have some risk.
- ≥ 7 are probably hazardous.

- Combination of HAL and Peak Hand Force (also called Maximum Voluntary Contraction (MVC)) values which nearly all workers may be exposed to without adverse health effects
- Based on epidemiological, psychophysical and biomechanical studies and is meant for "mono-task" jobs performed for 4 or more hours per day.
- Related to exertion frequency and duty cycle (% of work cycle where force is greater than 5% of maximum).

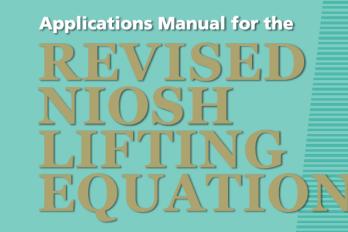



Risk Scoring System of HAL

· · ·			-			
			D	uty Cycl	e (%)	
Frequency (Exertion/sec)	Period (Sec/exertion)	0-20	20-40	40-60	60-80	80-100
0.125	8	1	1			
0.25	4	2	2	3		
0.5	2	3	4	5	5	6
1	1	4	5	5	6	7
2	0.5		5	6	7	8
Liss the Life Detion			and all all a the s	Retestion	the state of the second	4 - 1 - 1 -

* Use the HAL Rating scale to obtain HAL values outside those listed in the above table.

HAL Threshold Limit Value (TLV) Graph


Low Back Assessment Methods

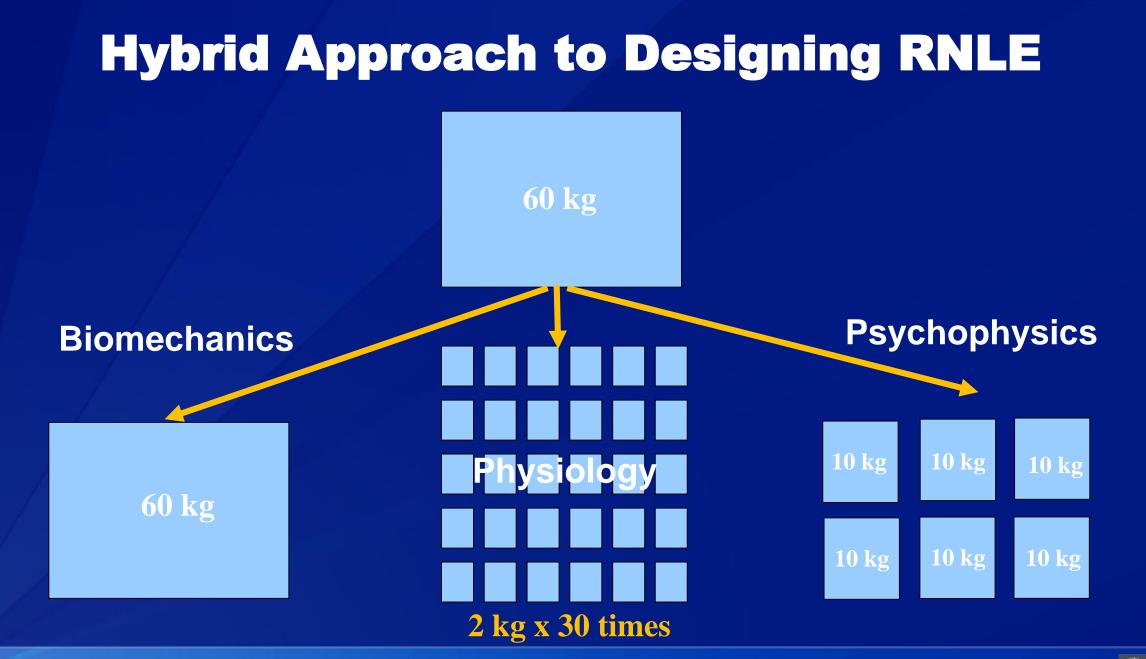
NIOSH Lifting Equation
ACGIH Lifting TLVs
Push-Pull Force Limits
3DSSPP
Equipment based methods (e.g. OSU lumbar

motion monitor = Conity)

NIOSH Lifting Equation (NLE)

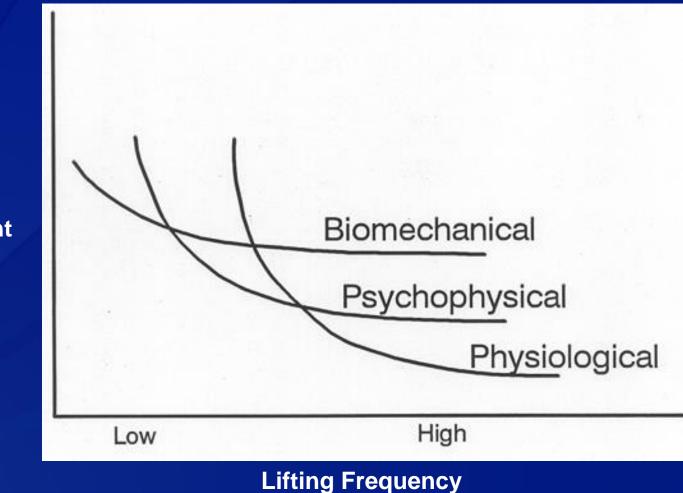
- First published by NIOSH in 1981
- Revised and published in 1991: Revised NLE or RNLE
- Official NIOSH applications manual for RNLE was published in 1994
- RNLE is used for assessing two-handed lifting tasks
- Two main outcome variables of the RNLE
 - Recommended weight limit (RWL)
 - Lifting Index (LI)

Centers for Disease Control and Prevention National Institute for Occupational Safety and Health


Recommended Weight Limit (RWL)

 $\textbf{RWL} = \textbf{LC} \times \textbf{HM} \times \textbf{VM} \times \textbf{DM} \times \textbf{AM} \times \textbf{FM} \times \textbf{CM}$

Where:


		Metric	U.S. Customary
Load Constant	LC	23kg	51lb
Horizontal Multiplier	HM	(25/H)	(10/H)
Vertical Multiplier	VM	1– (.003 V-75)	1– (.0075 V-30)
Distance Multiplier	DM	.82 + (4.5/D)	.82 + (1.8/D)
Asymmetric Multiplier	AM	1– (.0032A)	1– (.0032A)
Frequency Multiplier	FM	From Table 5	From Table 5
Coupling Multiplier	CM	From Table 7	From Table 7

Criteria for Acceptable Lifting

Acceptable Weight

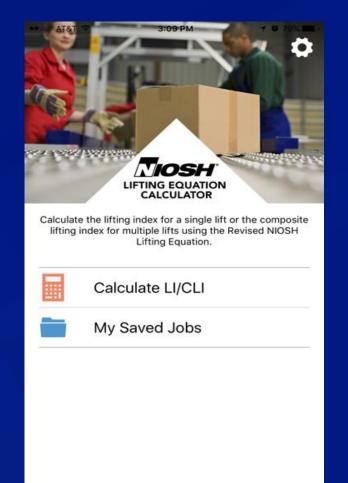
Source: hypothetical curves by NIOSH

Risk of Low Back Pain (LBP)

Survival LI vs Risk of LBP 40 effect 35 30 25 Percent LBP Risk 20 Reporting 15 High 10 E ST In. Groosed 34 34 A Low 3 Lifting Index Lifting Index Category Source: hypothetical curves by NIOSH

Source: Water and Lu et al., 1999, 2011

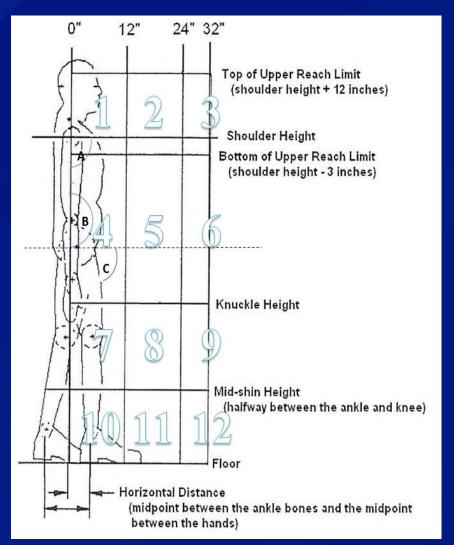
ISO 11228 Ergonomics Standard Part 1: Lifting, Lowering and Carrying


Table D.1 — Interpretation of LI (m_A /RML) values

LI value	Exposure level/risk im- plication	Recommended actions ^a				
LI ≤ 1,0	Very low	None in general for the healthy working population.				
1,0 < LI ≤ 1,5	Low	In particular pay attention to low frequen- cy/high load conditions and to extreme or static postures. Include all factors in redesigning tasks or workstations and consider efforts to lower the LI values < 1,0.				
1,5 < LI ≤ 2,0	Moderate	Redesign tasks and workplaces according to priorities to reduce the LI, followed by analysis of results to confirm effectiveness.				
$2,0 < LI \le 3,0$	High	Changes to the task to reduce the LI are a high priority.				
	eneral use of ergon	siderations outlined in the Introduction and omics principles and approaches that should				

NIOSH Mobile App (NLE Calc) for RNLE

- Official and free mobile app for RNLE
- The first app capable of calculating composite lifting index for multiOtask lifting jobs
- Provides calculation details and recommendations



ACGIH TLV for Lifting (1/3)

- American Conference of Government al Industrial Hygienists (ACGIH) TLV for lifting
- More limitations than the RNLE (i.e., no task asymmetry)
- "Simplified" version of RNLE
- Tables for different work duration and lifting frequency

ACGIH TLV for Lifting (2/3)

TABLE 1. TLVs' for Infrequent Lifting:

•2 Hours per Day with ••60 Lifts per Hour OR
•2 Hours per Day with ••12 Lifts per Hour

	Horizontal	Distance of Hands	from Body ^A		
Vertical Height of Hands	Close: • 12 inches (30 cm)	Intermediate: 12-24 inches (30-60 cm)	Extended: ^B 25-32 inches (60-80 cm)		
Reach Limit: ^C	35 lbs (16 kg)	15 lbs (7 kg)	No known safe limit for repetitive lifting ^D		
Shoulder Area: 12" above to 3" below shoulder	35 lbs (16 kg)	15 lbs (7 kg)	No known safe limit for repetitive lifting ^D		
Torso Area: Below shoulder to knuckle height ^E	70 lbs (32 kg)	35 lbs (16 kg)	20 lbs (9 kg)		
Knee Area: Knuckle to middle of shin height ^E	40 lbs (18 kg)	30 lbs (14 kg)	15 lbs (7 kg)		
Ankle Area: Middle of shin height to floor	30 lbs (14 kg)	No known safe limit for repetitive lifting ^D	No known safe limit for repetitive lifting ^D		

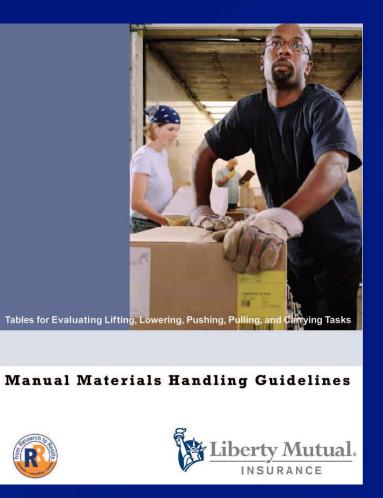

ACGIH TLV for Lifting (3/3)

TABLE 3. TLVs' for Frequent, Long Duration Lifting:••2 Hours per Day with ••30and ••360 Lifts per Hour

	Horizontal Distance of Hands from Body ^A							
Vertical Height of Hands	Close: • 12 inches (30 cm)	Intermediate: 12-24 inches (30-60 cm)	Extended: ^B 25-32 inches (60-80 cm)					
Reach Limit: ^C	25 lbs (11 kg)	No known safe limit for repetitive lifting ^D	No known safe limit for repetitive lifting ^D					
Shoulder Area: 12″ above to 3″ below shoulder	25 lbs (11 kg)	No known safe limit for repetitive lifting ^D	No known safe limit for repetitive lifting ^D					
Torso Area: Below shoulder to knuckle height ^E	30 lbs (14 kg)	20 lbs (9 kg)	10 lbs (5 kg)					
Knee Area: Knuckle to middle of shin height ^E	20 lbs (9 kg)	15 lbs (7 kg)	5 lbs (2 kg)					
Ankle Area: Middle of shin height to floor	No known safe limit for repetitive lifting ^D	No known safe limit for repetitive lifting ^D	No known safe limit for repetitive lifting ^D					

Push, Pull, Carry Force Limits (1/2)

- Maximal acceptable force limits (MAFs) for males and females in comfortable work conditions
- All the data are psychophysically determined, which the people are willing to accept if they were to perform the push or pull activities as a part of their normal 8 hour job

Push, Pull and Carry Force Limits (2/2)

							I	NITIA	
						MALE			FEMALE
	FREQU			30s	1m	5m	30m	8h	30s 1m 5m 30m 8h
0	NE PUS	HEVE	RY 57	305	· · · ·			25	
	130		37		-	13	14	36	
			25	-	-	-	-	22	
			57	-	-	-	-	28	
	127		37 25	-	-	15	16	39 25	
	_		57	-			11	31	
	124		37	-	12	18	19	42	
			25	-	-	-	-	29	
ົດ	121		57 37	1	- 14	12 20	13 21	35 46	
Ω	121	ES	25		-	-	11	32	
INITIAL PUSHING FORCE (POUNDS)		3	57	-	-	15	16	38	
2	118	118 5/ - - 15 16 38 118 37 - 17 23 25 49 25 - - 13 13 35							
2		Σ	25 57	-	12	<u>13</u> 17	<u>13</u> 18	35 42	
-	115		37	11	12	27	28	42 52	
щ		S	25	-	-	15	16	39	
8		Ш	57 - 14	20	21	46			
Ľ	112	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Ш		U U	57	-	17	24	25	49	
(D	109	Z 37 16 26 34 35 59							
ž	_		25	-	15	21	22	46	
Ŧ	106	- -	57 37	12 19	20 30	27 38	28 39	53 63	
ົດ	100	Ō	25	-	18	24	26	50	
Ð		HEIGHT	57	14	23	31	32	57	
Δ.	103	Ë	37	23 12	34	42	43	66	
1	_		25 57	12	21	28 35	29 36	<u>54</u> 60	
₹.	100	¥	37	26	38	46	47	69	
⊑		HAND	25	14	24	32	33	58	
Z	97	Í	57	21 30	31 42	39	41	64	
	97		37 25	30	42 28	50 36	51 38	72 61	
		1	57	25	36	44	45	67	
	94		37	35	46	54	55	75	
			25 57	21 29	33 40	41	42	65 71	
	91		37	39	40 51	48 58	49 59	77	
			25	25	37	45	46	68	
			57	33	45	53	54	74	13
	88		37 25	44 29	55 42	62 50	63 51	80 72	13
			57	38	50	57	58	77	11 17
	85		37	49	59	66	67	82	11 17
			25	34	47	54	56	75	
	82		57 43 54 62 63 79 37 53 64 70 71 84				14 22 15 22		
	°2		25	39	04 51	59	60	84 78	
		1	57	48	59	66	67	82	14 19 27
	79		37	58	68	73	74	86	14 20 28
			25	44	56 + =	63	64 TER TI	80	

INITIAL FORCES

TABLE 8F - FEMALE POPULATION PERCENTAGES FOR PUSHING TASKS SUSTAINED FORCE

PUSHING																		
DISTANCE				7 FEET				25 FEET				50 FEET						
FREQUENCY ONE PUSH EVERY			30s	1m	5m	30m	8h	30s	1m	5m	30m	8h	30s	1m	5m	30m	8h	
			53	-		-	-	23	-	-	-	-	-	-	-	-	-	-
FORCE (POUNDS)	80		35 22	-	2	2	- 2	16	-	2	1	2	-	2	2	1	2	-
	76		53	-	-	-	-	28		-	-	-	-	-	-	-	-	-
			35 22	-	-	-	-	21	-	-	-	-	-	-	-	-	-	-
			53	-	-	-	14	34	-	-		-	-	-	-	-	-	-
	72		35	-	-	-	-	26	-	-	-	-	12	-	-	-	-	-
	68 64 60		22 53	-	-	13	19	13 40	-	-	-	-	- 12	-	-	-		-
		CHES)	35	-	-	-	12	32	-	-	-	-	16	-	-	-	-	-
			22 53	-	-	- 18	- 25	18 47	-	-	-	-	11 17	-	-		-	-
			35	-	2	18	25 17	47 39		1	2	2	22	1	2	2	1	-
ö			25	-	-	-	-	24	-	-	-		15		-	-		-
			53 35	-	13	24 17	31 23	54 46	-	1	-	1	23 29	1	1	-	1	- 12
C			22	-	-	-	11	30	-			-	21	-	-			-
Z	56	Ň	53 35	-	19 13	31 23	39 30	60 53	-	-	-	11 15	30 36	-	-	-	-	14 18
T			22	-	-	11	17	38	-	-	-	-	28	-	-	-	-	12
D PUSHING	52	E	53	16	26	40	47	66	-	-	12	17	39	-	-	-	-	20
		Ξ	35 22	-	19	31 17	39 24	60 46	-	1	16	22 15	44 36	1	1	1	1	25 18
	48	Ð	53	23	35	48	55	72	-	-	18	25	47	-	-	-	-	28
ш		핖	35	16	27	40	47	67	-	12	23	30	53	-	-	-	14	34
Ę		_	22 53	32	14 44	25 57	<u>32</u> 63	54 77	13	15	16 27	23 34	45 56	-	-	11	17	26 38
≤	44	Q	35	24	36	49	56	73	12	20	32	40	61	-	-	15	21	43
SUSTAINED		A	22 53	12 43	21 54	<u>34</u> 65	<u>42</u> 70	62 82	- 21		25 37	<u>32</u> 44	54 65			- 19		35 48
	40	HA	35	43 34	54 46	59	65	62 78	20	24	43	50	69	-	13	24	31	53
S			22	20	31	45	52	70	18	22	35	42	63	-	-	17	23	46
	36		53 35	54 46	64 57	73 67	77 72	86 83	32 31	35 41	48 54	55 60	72 75	1	17 22	30 35	37 43	58 63
	30		22	30	43	55	62	77	28	33	46	53	71	-	16	27	35	57
[22		53	64	73	80	83	89	45	48	60	66	79	16	29	42	50	68
	32		35 22	57 43	67 55	75 66	79 71	87 82	44 41	53 46	64 58	70 64	82 78	14 13	35 27	48 40	55 47	72 67
	28		53	74	80	85	87	+	58	61	71	75	85	29	44	56	62	77
			35 22	69 57	76 67	82 75	85 79	+ 87	57 55	65 59	74 69	78 74	86 84	26 25	49 41	61 54	67 60	80 76
	24		53	82	86	89	+	+	71	73	80	83	89	46	59	69	74	84
			35	78	83	87	89	+	70	76	82	85	+	43	64	73	77	86
	_		22 53	70 88	<u>77</u> +	83	85	+	68 81		79 87	<u>82</u> 89	89	42 64	57 73	68 80	<u>72</u> 83	83 89
	20		35	86	89	+	+	+	81	84	88	+	+	61	76	82	85	+
			22	80	85	89	+	+	79	81	86	88	+	60	72	79	82	89
	16		53 35	++	++	++	+	+	89 88	89 +	+	+ +	+	79 77	84 86	88 89	+ +	+
ļ			22	88	+	+	+	+	88	89	+	+	+	76	83	88	89	+
	12		53 35	++++	+	+	+	+++	+	+	+	+	1	89 88	+	+	+++	+
	12		22	+	+	+	+	+	+	+	+	÷	+	88	÷	+	÷	+
					+ =	GREA	TER TI	HAN 9	0%	- =	LESS	THAN	10%					

3D Static Strength Prediction Program (3D SSPP)

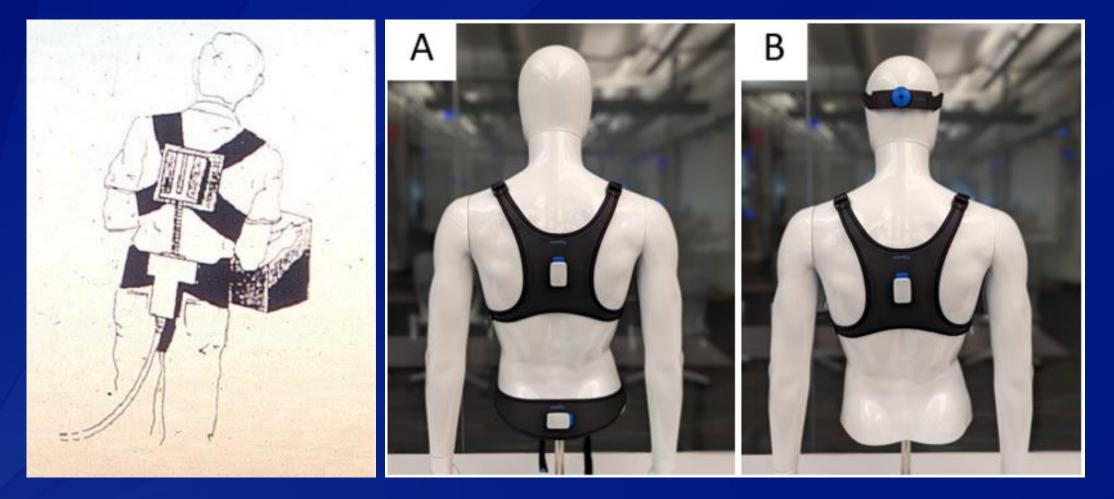
- Software program developed by the University of Michigan which predicts static strength requirements for tasks
- Provides an approximate job simulation that includes posture data, force parameters and male/ female anthropometry
- Analysis features an automatic posture generation and 3D human graphic illustrations

3DSSPP User Interface

Posture Prediction	×	50Top	D Front _OX	DSide
Hand Orientation Prone Semiprone Supine Hand Location (cm) Left Horizontal 25.2 Vertical 50.1 Lateral .18.7 OK Cancel Undo	Right 25.2 50.1 18.7 Redraw			
dy Segment Angles	×	🕺 Untitled Task	St Status Task: Untitled Task. Gender. Male, Percentile: 50th Ht (in): 69.7, Vt (Lb): 165.6 Hand Forces (Lb) Left: 10, Right: 10	
Limb Angles Left Right Horz Vert Horz Vert Axial Rotation Upper Arm 72 -63 72 -63 Upper Leg 120 120 120 Increment Lower Leg 120 120 120 0 1 0 5	Neutral Posture 0 Redraw 0 Undo 10 OK		Hand Location Left Right (in) Horizontal: 15.7 J5.7 Vertical: 25.0 25.0 Lateral: -8.0 8.0 Strength Percent Capable Coeft Elbow: 99 Hip: 93 Balant Shoulder: 99 Knee: 99 CP Ba Torso: 97 Ankle: 99 SE Ba	of Friction: 0 2e Status 4: Acceptable 3: Acceptable Graphic
	+ Cancel			

3DSSPP Outcome Variables

3D Analysis Summary - 0 × Description-Company: NIOSH Tom Waters Evaluation Only, Analyst: Unknown, Date: 12/30/03 Task: Untitled Task Gender: Male, Percentile: Data Entry, Height: 160.0 cm, Weight: 75.2 Kg Comment: Hand Loads Force(N) X Y. Ζ Mag Right X Y. Ζ Mag Left 0.0 44.5 0.0 44.5 0.0 44.5 0.0 44.5 1207 (N) 3D Low back Compression: BCDL->1 I <-BCUL Percent of Population Capable Feet 100 Flhow: % Load Left: 50 99 Shoulder: Right: 50 99 Torso: 97 SDL Un-Acceptable CP Balance: Hip: 99 SE Balance: Un-Acceptable Knee: Ankle: 94 SDL Coef. of Friction: 0.12


3DSSPP(v4.32), Copyright 2001, The Regents of the University of Michigan, ALL RIGHTS RESERVED

Equipment-based methods

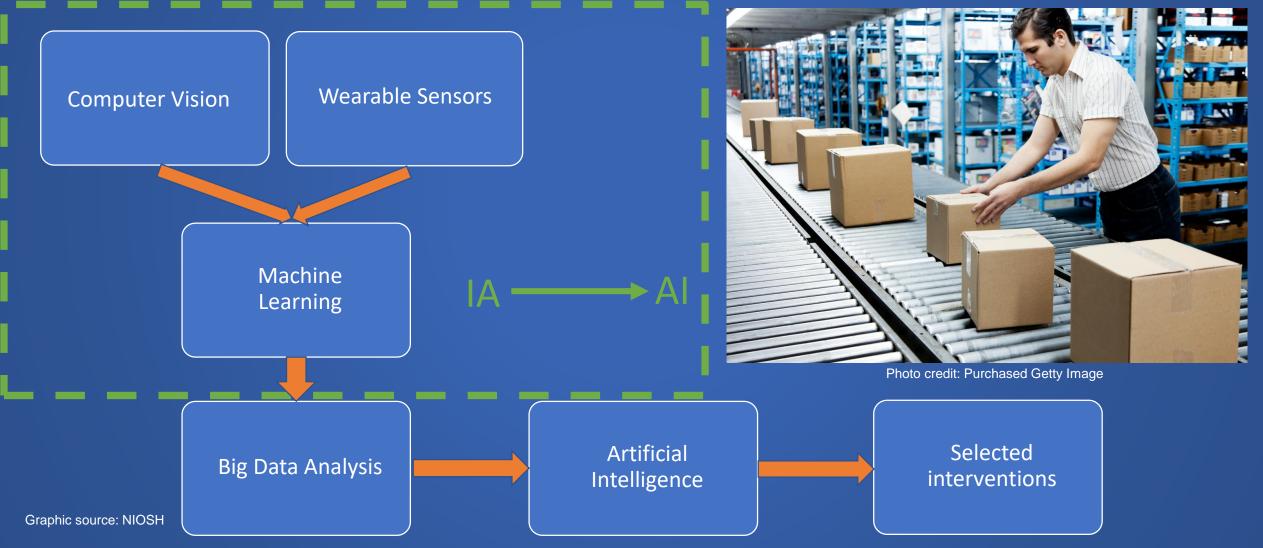
Electromyography (EMG)

- Attempt to estimate muscle loads
- Useful for measuring muscle fatigue
- Back posture measurement
 - Lumbar Motion Monitor (LMM)
 - Wearable sensors

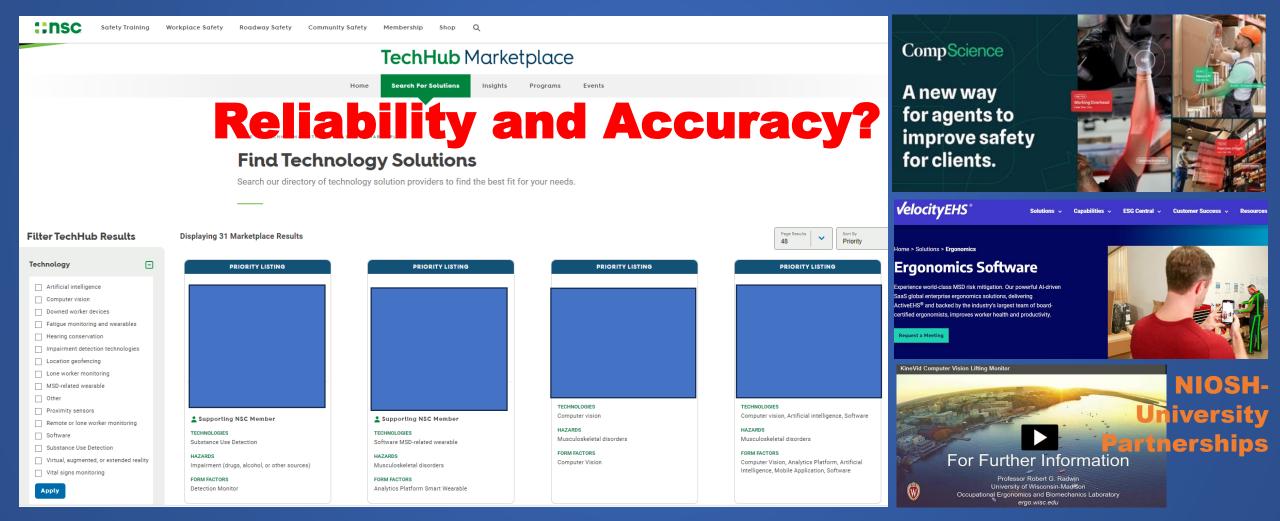
Lumbar Motion Monitor (LMM)

Source: The Ohio State University

Whole Body Assessment Methods

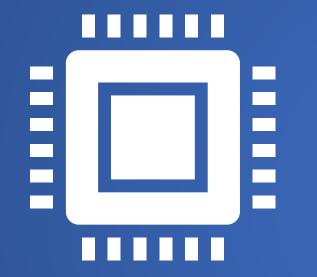

 Ovako Working Posture Analysis System (OWAS)
 Method for the identification of musculoskeletal stress factors which may have injurious effects – PLIBEL

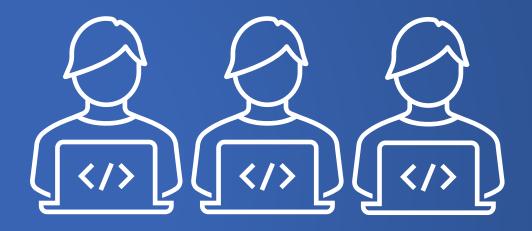
Key Indicator Method (KIM)



Part3 Future Ergonomic Risk Assessments in the Age of Al

Applications of Al Based Ergonomic Risk Assessment Systems

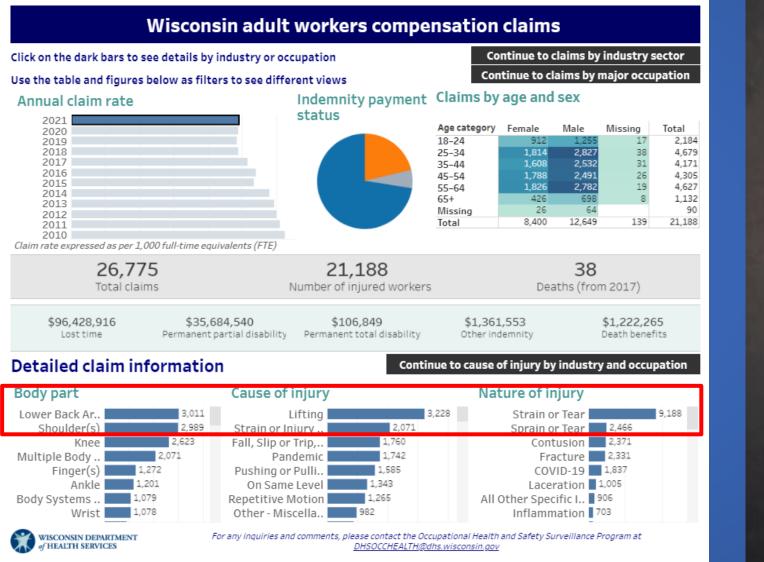



Sources: National Safety Council (left); www.compscience.com/ (top right); www.ehs.com/solutons/ergonomics (right middle); ergo.wisc.edu/research-2 (right bottom)

AI Projects at NIOSH

Natural Language Processing	Computer Vision	Wearable Sensors	Robotics
 Auto-coding workers comp records Identify factors related to mining fatalities 	 Performance of protective materials Classify particle deposition Ergo risk identification 	 Heat detection Proximity sensing Ergo risk identification 	 Smart path planning for co-bots Exoskeletons

NIOSH MSD Record Auto-coder Project


90% Accuracy

Efficiency: 360% by a standard PC

94% Accuracy Efficiency: 1% by 1 coder

Graphic source: Microsoft Power Point icons; information source: Bertke et al. Development and evaluation of a Naïve Bayesian model for coding causation of workers compensation claims. J of Safety Research 43: 327-332 (2012)

Wisconsin Workers' Compensation Dashboard

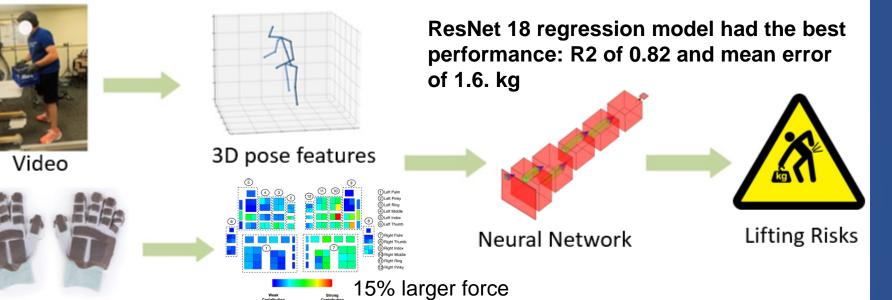

Source: https://www.dhs.wisconsin.gov/occupational-health/workers-compensation-dashboard.htm

Photo credit: Purchased Getty Image

NIOSH-Purdue Tactile Gloves Project

- ResNet 18 regression model had the best performance: R² of 0.82 and mean error of 1.6 kg*.
- Shapley additive explanations (SHAPs) indicated:
 - Right hand is more important than left hand
 - Fingers sensors are more important than palm sensors
 - Middle phase of lifting is more important that others
- Not suitable for assessing heavy loads (>13 kg)

- Glove Data
- Average pressure across hand regions

An overall accuracy of 90% was achieved with our best model

	Precision	Recall	F1 score
Low Risk	0.97	0.97	0.97
Middle Risk	0.88	0.90	0.89
High Risk	0.80	0.75	0.77

Graphic source: Purdue University; and Chen H, et al. Lifting risk assessment using tactile gloves and computer vision. Presented at Applied Ergonomics Conference, Louisville, KY, March 25-28, 2024. *: Zhou G., Lu M. and Yu D.. Tactile gloves predict load weight during lifting with deep neutral networks. IEEE Sensors. Vol 23 (16): 18798-18809 (2023).

NIOSH Wearable Sensors Project (1/3)

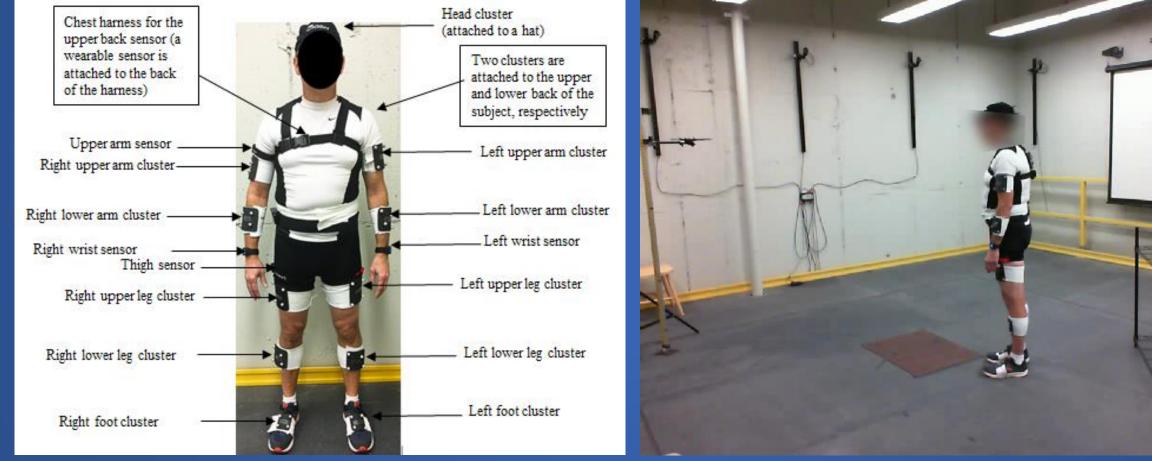
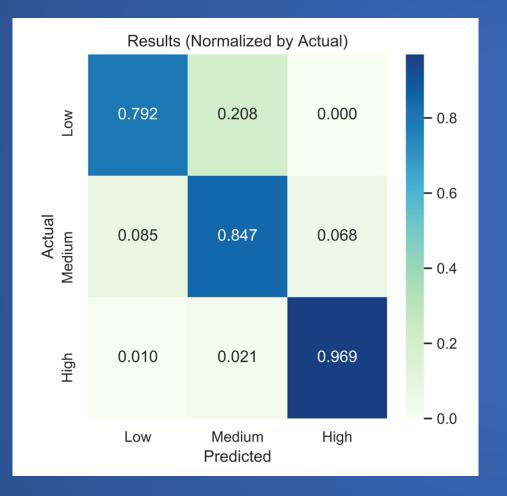
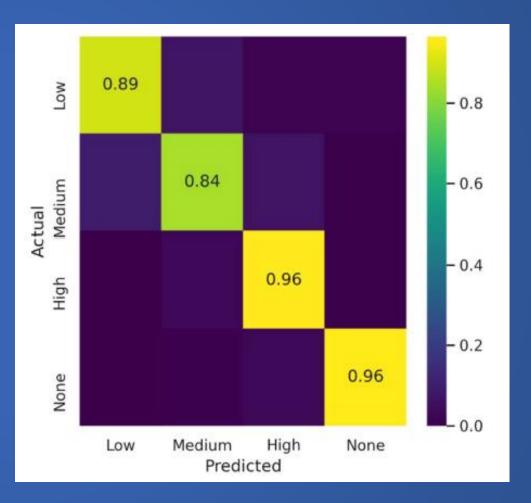
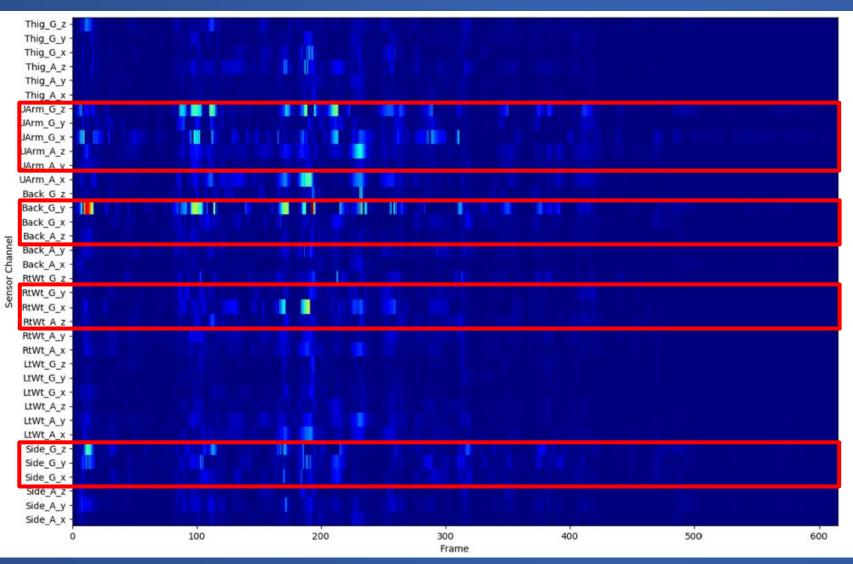




Photo source: NIOSH

Video source: NIOSH

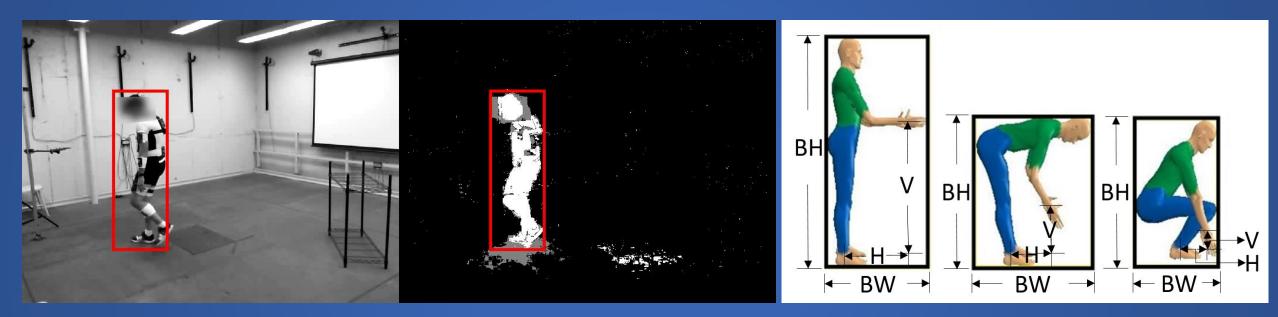
NIOSH Wearable Sensors Project (2/3)

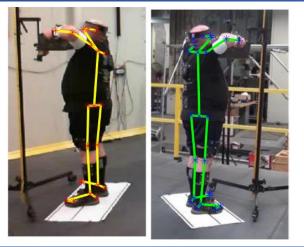


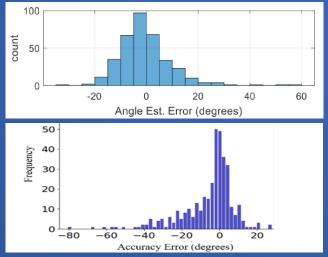
2D CNN Model: Accuracy: 90.6%

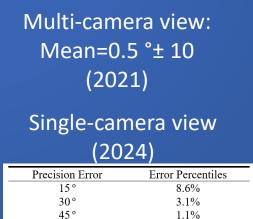
CNN +LSTM: Accuracy: 96%

NIOSH Wearable Sensors Project (3/3)

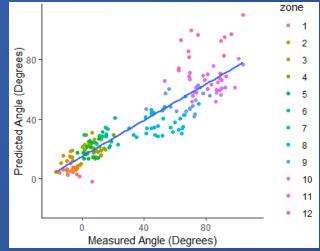

•


- The deep neural network models predicted grouped lifting risk zones with a >90% accuracy.
- The main limitation of the models is the applicability of the information on twohanded lifting tasks without trunk asymmetry in a laboratory setting.
- More data from the field is needed for improving the applicability of the ML models


The classic biomechanical method for estimating the lifting risk zones did not work well using a limited number of motion sensors.


Graphic source: Brennon Thomas, University of Cincinnati for saliency mapping

NIOSH-UWM Computer Vision Project (1/2)



0.3%

60°

All graphic sources: Dr. Robert Radwin, University of Wisconsin-Madison (UWM) and NIOSH

NIOSH-UWM Computer Vision Project (2/2)

Occupational Ergonomics and Biomechanics Laboratory University of Wisconsin-Madison

Graphic and photo sources: University of Wisconsin-Madison and NIOSH

NIOSH-ASTM Exoskeleton Projects

- 1. To evaluate the longitudinal effects of passive shoulder exoskeletons (PSE) on **company injury records** and associated workers' **compensation costs** for overhead assembly work in the manufacturing setting.
- 2. To assess **shoulder functions** of PSE users and non-users (control group) at baseline, one-year and two-year follow-ups.
- 3. To assess a change in the risk of impaired **back function** associated at baseline and one-year follow-up.

Photo and logo credits: PSE Company, ASTM and AExG websites

Part 4 National Occupational Research Agenda (NORA)

https://www.cdc.gov/nora/councils/mus

- The NORA Musculoskeletal Health Cross-Sector (MUS) Council
- Objective: Protecting workers' musculoskeletal health.
- Council members (N=33): academia, industry, insurance, safety organizations and labor safety and health advocates.
- Co-chairs: Scott P. Schneider (retired, Laborers' Health and Safety Fund) and Jack Lu (NIOSH)
- Council members (presented by last name in alphabetical order): Benjamin C. Amick III, Kari Babski-Reeves, Brent Baker, Menekse Barim, Deborah Berkowitz, David Brodie, Ann Marie Dale, Woody Dywer, Eva Henry, Robert R. Fox, Sean Gallagher, Richard Gardner, Ninica Howard, Jay, Kapellusch, Jennifer Marcum, William S. Marras, Kelsey L. McCoskey, Blake McGowan, Alysha Meyers, Robert Radwin, Gary Orr, Jessica Ramsey, David M. Rempel, John Rosecrance, Acran Salmen Navarro, Shannon Jones, Penney Stanch, Mike Lampel, Jeffrey E. Vogel, Steve Wurzelbacher, Ben Zavitz

NORA NATIONAL OCCUPATIONAL RESEARCH AGENDA (NORA) NATIONAL OCCUPATIONAL RESEARCH AGENDA FOR MUSCULOSKELETAL HEALTH October 2018 Developed by the NORA Musculoskeletal Health Cross-Sector Council

NORA MUS Research Agenda

Objective 1: Defining the incidence and impact of WMSDs

- Improve surveillance of MSDs
- Quantify understanding of musculoskeletal injuries
- Quantify the human and economic burden of MSDs

Objective 2: Understanding the risk factors for WMSDs

- Improve methods of exposure assessment
- Develop new risk assessment models and methods
- Assess the changing nature of job tasks

Objective 3: Describing the underlying mechanism of MSDs

- Describe the underlying mechanisms of MSDs
- Investigate the role of work-related psychosocial factors on musculoskeletal health

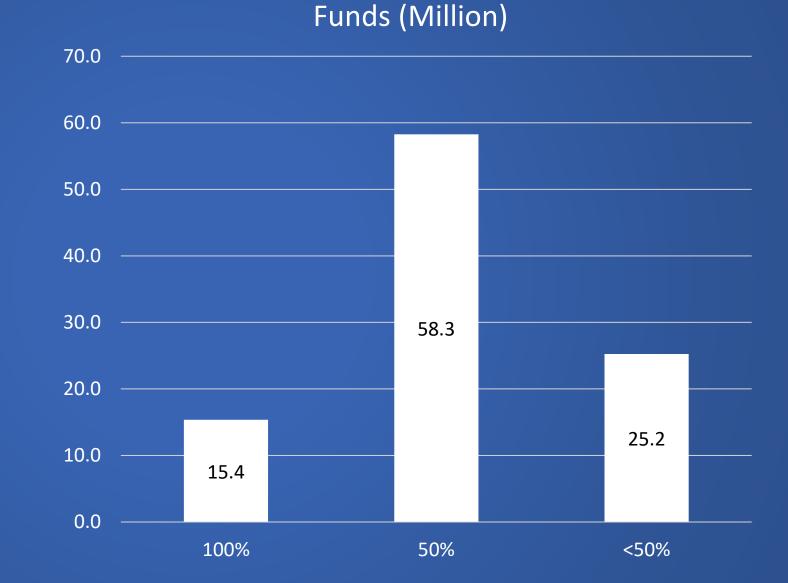
Objective 4: Developing and evaluating interventions to prevent WMSDs and limit disability

- Develop new interventions
- Evaluate intervention effectiveness
- Evaluate medical management of MSDs
- Design and evaluate interventions for changing workforce demographics

Objective 5: Disseminating and implementing interventions to prevent WMSDs and limit disability

- Investigate control efforts for the prevention of MSDs
- Disseminate information on knowledge concerning barriers and facilitators for the implementation of preventive measures for MSDs.
- Identify effective means for treating affected workers

Source: Stock photos from iStockphoto.com


Intersecting Goals of MUS and Sector Programs

	CRC	HLP	IID	MUS	RHP	TIP	HWD
AFF	Inte	ermediate	<mark>Goal 4.1 V</mark>	ibration ar	nd Repetiti	ve Motion	
CON	Inte	ermediate	Goal 4.3 M	ISDs and E	merging T	echnologie	es
HSA	Inte	ermediate	Goal 4.1 R	educing O	ccupationa	a <mark>l MSD</mark> s	
MNF	Inte	ermediate	Goal 4.3 M	ISDs and E	merging T	echnologie	es
MIN							
OGE							
PSS							
SRV	Int	ermediate	Goal 4.5 F	Risk Factor	rs for Back	Injuries	
TWU	Int	ermediate	Goal 4.3 N	/ISDs and B	Emerging 1	<mark>Fechnologi</mark>	<mark>es</mark>
WRT	Int	ermediate	Goal 4.6 M	ISDs amor	ng Older W	orkers	

Extramural Projects Funded by NIOSH (2019-2024)

Project End Date	Institution	Title (NIH RePORTER Hyperlink)	Principal Investigator Last Name	Total Funding
5/31/2019	Northeastern University	RANDOMIZED CONTROLLED TRIAL OF WHOLE BODY VIBRATION INTERVENTION IN TRUCK DRIVER	Dennerlein	\$2,199,302.00
X/31//U/1	Texas A&M Engineering Experiment Station	NEW BIOMECHANICAL KNOWLEDGE BASE AND DIGITAL DESIGN TOOL FOR PREVENTION OF OCCUPATIONAL NECK DISORDERS	Zhang	\$1,577,536.00
9/29/2020	University of Southern California	SONOGRAPHIC TISSUE MORPHOLOGY IN EARLY STAGE WORK-RELATED MEDIAN NERVE PATHOLOGY	Roll	\$2,324,186.00
8/31/2019	University of Pittsburgh	IN VIVO CHANGES IN THE LOWER EXTREMITY JOINTS AND MUSCLES DURING PROLONGED STANDING	Chambers	\$323,880.00
8/31/2020	University of Wisconsin-Milwaukee	EXPOSURE-RESPONSE RELATIONSHIPS FOR LOW BACK PAIN FROM POOLED DATA	Kapellusch	\$890,068.00
8/31/2020	University of Wisconsin-Madison	A DIRECT READING VIDEO ASSESSMENT INSTRUMENT FOR REPETITIVE MOTION STRESS	Radwin	\$1,392,819.00
8/31/2020	Washington University	DEVELOPING A GENERAL POPULATION JOB EXPOSURE MATRIX FOR STUDIES OF WORK-RELATED MSD	Evanoff	\$987,514.00
8/31/2022	Auburn University	ADVANCING WORKPLACE SAFETY SURVEILLANCE WITH AMBULATORY INERTIAL SENSORS	Schall	\$324,000.00
8/31/2022	Auburn University	THE LOW BACK CUMULATIVE TRAUMA INDEX: A FATIGUE-FAILURE BASED RISK ASSESSMENT TOOL	Gallagher	\$380,968.00
2/28/2021	Herowear, LLC	SPRING-POWERED EXOSUIT TO PREVENT LOW BACK PAIN DUE TO OVERUSE INJURY	Yandell	\$150,000.00
9/29/2023	University of Iowa	USING COMPUTER VISION AND DEEP LEARNING TO MEASURE WORKER KINEMATICS	Fethke	\$397,415.00
8/31/2024	Fishing Partnership Health Plan	COMMUNITY-BASED SAFETY TRAINING FOR THE MID-ATLANTIC FISHING INDUSTRY	Bartlett	\$731,250.00
8/31/2024	Oregon State University	IMPROVING DUNGENESS CRAB VESSEL EQUIPMENT: AN ERGONOMIC INTERVENTION TO REDUCE RISK FOR MUSCULOSKELETAL INJURIES AND FALLS OVERBOARD	Kim	\$671,465.00
8/31/2025	University of Wisconsin-Madison	A COMPUTER VISION LIFTING MONITOR	Radwin	\$1,552,514.00
8/31/2026	Oregon State University	EXOSKELETONS FOR COMMERCIAL DUNGENESS CRAB FISHING TO REDUCE MUSCULOSKELETAL INJURIES	Kim	\$710,881.00
8/31/2024	University of Illinois-Chicago	COLLABORATIVE RESEARCH: NRI: INT: CUSTOMIZABLE LOWER-LIMB WEARABLE ROBOT USING SOFT-WEARABLE SENSOR TO ASSIST OCCUPATIONAL WORKER	Kim	\$749,608.00

Funds for extramural projects (2019-2024) by MUS relevance

Source: NIOSH Office of Extramural Program (https://www.cdc.gov/niosh/oep/researchgrants.html)

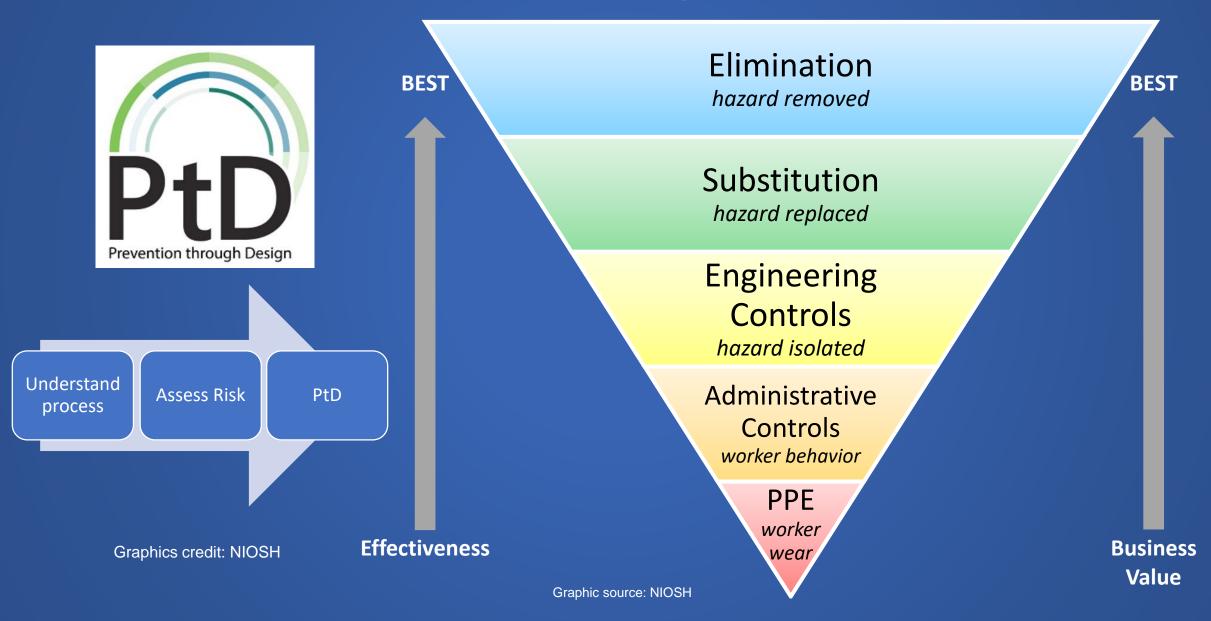
NIOSH Intramural MUS Projects (FY19-23)

	PI (s)	Title of Study
1	Daniel Welcome and Ren Dong	Development of Exoskeleton-Assisted Vibration Mitigation Techniques for Riveters
2	Steve Wurzelbacher and Libby Moore	Intervention and exposure assessment studies
3	Alysha Meyers	Claims analyses for MSD
4	Brian Chin	Chiropractic effectiveness and opioids study on low back problems in construction
5	Christopher Pan	Evaluation of Exoskeletons for Construction Workers on Elevated Work Platforms
6	John Wu and Scott Breloff	Effects of Footwear on Roofers' Slip Potential and Musculoskeletal Disorder Risk
7	Liying Zheng	Application of Exoskeletons for Safe Patient Handling—a Feasibility Study
8	Brent Baker	Molecular Potentiation of the Aging Phenotype through Repeated Physical Exposures
9	Mahiyar Nasarewanji and Patrick Dempsey	Prevention of manual materials handling injuries in mining
10	Samantha Case and Laura Syron	Preventing Nonfatal Injuries among Seafood Harvesters and Processors
11	Menekse Barim and Scott Breloff	Effects of Back Assist Exoskeletons in Manual Handling in the WRT Sector
12	Jack Lu and Menekse Barim	Evaluation of long-term health effects of passive shoulder exoskeletons in the manufacturing sector
13	Menekse Barim and Jack Lu	Workplace psychosocial stressors and MSD among healthcare professionals
14	Kristine Krajnak and Ren Dong	Finger Biological Responses to Vibration & Pressure Using Rat Tail Model
15	Erik Rader	Reexamination of the NIOSH Lifting Equation Calculator in a Research Mouse Model
16	Sherry Xu and Ren Dong	Technology Development and Evaluation for Controlling Hand-Arm Vibration Exposure
17	John Wu	Biomechanical Evaluation of Knee Savers for Reducing Joint Load During Squatting

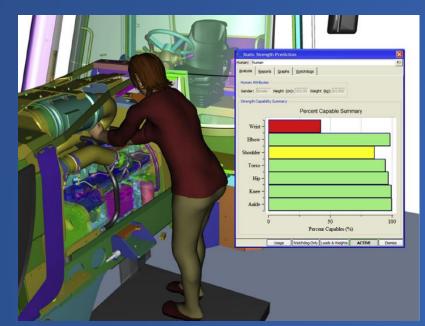
Part 5 Elements of Ergonomics Programs

ELEMENTS OF ERGONOMICS PROGRAMS

A Primer based on Workplace Evaluations of Musculoskeletal Disorders

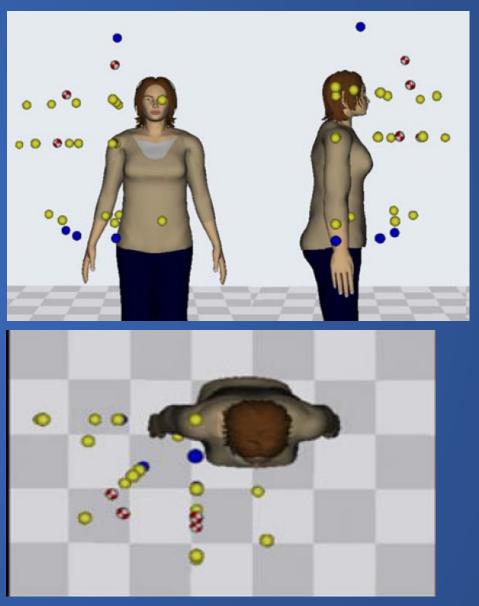

UPDATED

a. GEPARTMENT OF HEALTH AND HUMAN SERVICES Dutic Health Service Centers for Decase Control and Presention National Institute for Decase Control and Select and Health

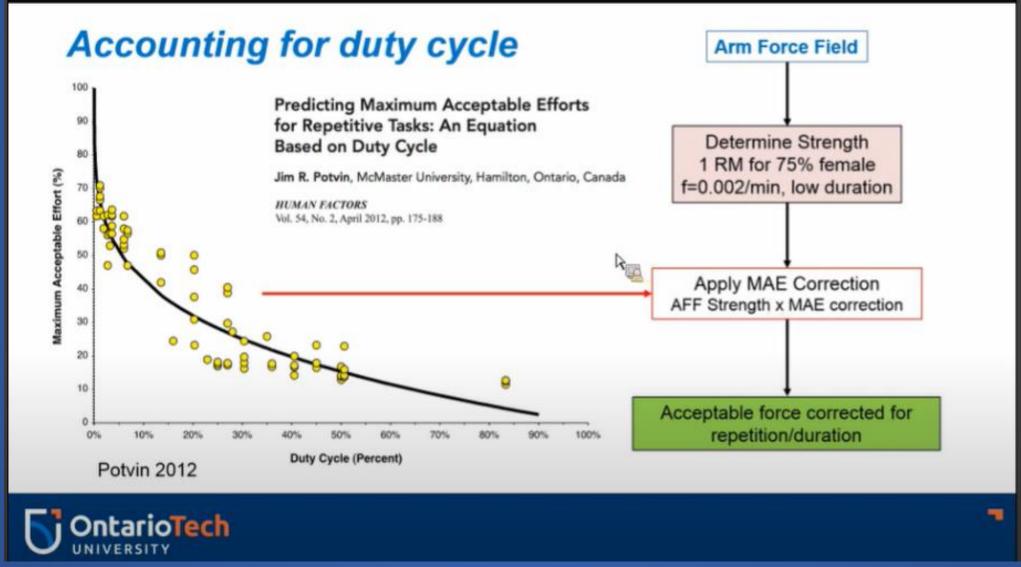


PtD and Hierarchy of Control

Innovative Technologies (1/6)



Digital Human modeling (DHM).1



Sources: 1. Raschgke and Cprt. Siemens Jack. Ch3 in Book "DHM and Posturography" pp. 35-48 (2019). 2. La Delfa et al. Equations to predict female manual arm strength based on hand location relative to the shoulder. Ergonomics. 57 (2): 254-261 (2014)

Innovative Technologies (2/6)


Innovative Technologies (3/6)

Accounting for duty cycle

- What if task has following parameters:
 - Frequency = 12 efforts/min
 - Duration effort = 0.7 s

MAE = 1 - (0.14 - 0.000035)^{0.24} = 0.38
 (38%)

Innovative Technologies (4/6)

Ergonomic Assessment Worksheet V1.3.3														
Basic Positions / Postures and movements of trunk and arms (per shift) Postures														
Static postures: > 4sec High frequency movements: 2		Evaluation of static postures and/or high frequent movements of trunk/arms Duration [sec/min] =							Sum of lines	As Trunk Rotation 1)	Eateral Bending 1)	Far Reach 2)		
trunk bending or 10 arm lifting ≻ 60° per min [%] [sec/min] [min/8h]	5 3 24	4,5	10 6 48	15 9 72		16	20	30	67 40 320	50	nes	int dur 0-5 0-3 Intensity x Duration	int dur 0-5 0-3 Intensity x Duration	int dur 0-5 0-2 Intensity × Duration
Standing (and walking)														
1 Standing & walking in alteration, standing with support	0	0	0	0	0,5	1	1	1	1,5	2				
2 Standing, no body support (for other restrict. see Extra Points)	0,7	1	1,5	2	3	4	6	8	11	13				
Bent forward (20-60°)	2	3	5	7	9,5	12	18	23	32	40				
3 With suitable support	1,3	2	3,5	5	6,5	8	12	15	20	25				
A Strongly bent forward (>60°)	3,3		8,5	12	17	24	_							
4 ∽ ∧ with suitable support	<u> </u>		0											
5 Upricht with					_	_	-00	38	51	63				
	Γ											T	l	
14 P Elbow at / above shoulder level	6	9	16	23	33	43	62	80	108	135				
Lying or climbing														
15 - (Lying on back, breast or side) arms above head	6	9	15	21	29	37	53	68	91	113				
16 Climbing	6,7	10	22	33	50	66								
1) 0 1 3 5	2)		0		1		3		5		Σ			
tic slightly medium strongly extreme tic slightly medium strongly extreme tic slightly medium strongly extreme		Reach	cios	•	60%		80%		arm stretch			Σ (max.=15)	Σ (max.=15)	Σ (max.=10)
⊑0 1,5 2,5 3	0 1			1,5 2					∑ (max. =	40)	1			
		du P	neve 0%		4 se 6%		10 si 151		13 se 20%		(0)			(11)
Attention: Max. duration of evaluation = dura	tion of	task n			0%			-		-	(a) valuation, if c	Juration of ev	/aluation ≠60	(D))s
Postures = ∑ lines 1 - 16	Τ				(a)					b)	=			

Patient lifting equipment.2

1. Sachaub et al. EAWS. Int J Human Factors Modeling and Simulation Vol 3. pp. 414. (2012). 2. Getty Image on NIOSH document.

Methods-Time Measurement Ergonomic Assessment Worksheet MTM-EAWS.1

Innovative Technologies (5/6)

Computer vision.1

Wearable motion sensors.2

Industrial exoskeletons.3

Sources: 1.2. NIOSH. 3. Permission to use by Chris Reid, Boeing company, 4.Permission by the Pressure Profile System. 5. https://www.noraxon.com/our-products/insole-smartlead/

Innovative Technologies (6/6)

Safety Training Workplace Se	afety Roadway Safety Community Safety	Membership Shop Q			
		TechHub Marketple	ace		Ergonomic Guidelines for
	Home	Search For Solutions Insights Prog	grams Events		Manual Material Handling
	HOME / TECHHUB MARKETPLACE / SEARCH	MARKETPLACE			
	Find Technolog	gy Solutions			
	Search our directory of technolog	y solution providers to find the best fit for you	ır needs.		
Filter TechHub Results Displayi	ing 31 Marketplace Results			As Sort By Priority	
Kemote or lone worker monitoring Software Software Substance Use Detection Virtual, augmented, or extended reality Impair Vital signs monitoring Form I	PRIORITY LISTING PRIORITY LISTING pporting NSC Member socioles ance Use Detection ans fment (drugs, alcohol, or other sources) FACTORS tion Monitor	PRIORITY LISTING	PRIORITY LISTING ECHNOLOGIES Computer vision MAZARDS Musculaskietal disorders FORM FACTORS Computer Vision	PRIORITY LISTING TECHNOLOGIES Computer vision, Artificial intelligence, Software HAZARDS Musculoskeletal disorders FORM FACTORS Computer Vision, Analytics Platform, Artificial Intelligence, Mobile Application, Software	<image/> <image/>

https://www.nsc.org/techhub/search-for-solutions

https://og.mhi.org/ease

CDC Workplace

DIR

Psychosocial Well-being

- Multilevel approach:
 - Organization (Primary)
 - Workstation (Secondary)
 - Individual (Tertiary)

- Understand work design
- Commit to change
- Integrate risk information
- Engage workers in design
- Support workers' effort
- Participatory ergo program

7. Maintain management commitment and worker engagement

Photo Credit: Purchased Getty Image.

Future of Ergonomics

- Future of jobs: <u>mentally demanding and</u> <u>manually variable</u> in response to robotics and automation of manual jobs.
- Future of ergonomic risk assessments: shift from manual to <u>automatic identification of</u> risk factors based on AI technologies
- Future MSD prevention strategies may focus on the integration of physical, psychosocial and personal risk information (a <u>holistic approach</u>)

Photo Credit: Purchased Getty Image.

Key Takeaway Messages

- Establish OSH as the core business
- Implement ergonomics and psychosocial well-being programs
- Prevent MSDs through design
- Engage workers for solutions
- Consider innovative technologies, such as AI

Photo Credit: Purchased Getty Image.

Questions?

Presenter: Jack Lu (呂明倫), PhD, CPE National Institute for Occupational Safety and Health (NIOSH) 1190 Tusculum Ave Cincinnati, OH 45226 (513) 533-8158 email: mlu@cdc.gov

Work-related Musculoskeletal Disorders

Ming-Lun Lu^{1,*}, Brian D. Lowe¹, Ninica L. Howard², Alysha R. Meyers¹, Robert R. Fox³, Ren G. Dong¹ and Brent A. Baker¹

¹ National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA

² Safety and Health Assessment and Research for Prevention (SHARP) Program, Washington State Department of Labor and Industries, Tumwater, Washington, USA

³ General Motors Company, Global Ergonomics Lab, Warren, Michigan, USA (Retired)

(7) (PDF) Work-related Musculoskeletal Disorders (researchgate.net)

Or

https://www.researchgate.net/publication/ 364133749_Workrelated_Musculoskeletal_ Disorders

CHAPTER 14